Comparison of calcium flux assays across multiple GPCRs: implications for compound profiling and screening

**Annegret Boge, Richard Sportsman (Molecular Devices Corp.)
Helena Mancoba, Jeng-Horng Her, Jianfu Jeffrey Wang (MultiSpan, Inc.)**

Introduction
Assays of GPCR activation are widely used employing fluorescence on Fluo-4® and Fluo-3® dyes. Several commercial kits facilitate re-use protocols that are considered to be more robust than those requiring wash steps. Presently, no-wash (NW) kit techniques are often employed, while the use of Fluo-4® and Fluo-3® has diminished. NW kits often use a masking dye to reduce background fluorescence. Two main approaches are employed by no-wash kits. One eliminates washing by addition of a masking dye to reduce background fluorescence. To date, limited data has been presented comparing these two approaches against a large panel of GPCR targets.

Multispan technology and protocol
Calcium flux assays require a transcription factor and receptor expression. The expression of the GPCR receptor is achieved by co-transfection with a Fluo-4® or Fluo-3® reporter dye. Raw traces from the Multispan® Calcium Assays can be used to assess the efficacy of the Fluo-4® NW kit, which is often used to identify hits in high-throughput screening approaches. The raw traces from the Multispan® Calcium Assays can be used to assess the efficacy of the Fluo-4® NW kit, which is often used to identify hits in high-throughput screening approaches.

Raw traces GPCR 1-16

Raw traces GPCR 17-32

Raw traces GPCR 33-48

Calcium flux kit comparison in stable cell lines

Table 1: EC₅₀ and IC₅₀ values for GPCRs

Summary
- Multispan® technology enables the development of high-throughput calcium flux assays using Fluo-4® and Fluo-3® dyes. The use of Fluo-4® and Fluo-3® has diminished. NW kits often use a masking dye to reduce background fluorescence. Two main approaches are employed by no-wash kits. One eliminates washing by addition of a masking dye to reduce background fluorescence. To date, limited data has been presented comparing these two approaches against a large panel of GPCR targets.

Figure 1: The calcium assay kits from Molecular Devices employ neutralised calcium and calcium in A and together with masking dye.

Figure 2: The raw traces from the Multispan® Calcium Assays can be used to assess the efficacy of the Fluo-4® NW kit, which is often used to identify hits in high-throughput screening approaches.

Table 2: EC₅₀ and IC₅₀ values for GPCRs

Figure 3: The raw traces from the Multispan® Calcium Assays can be used to assess the efficacy of the Fluo-4® NW kit, which is often used to identify hits in high-throughput screening approaches.

Figure 4: The raw traces from the Multispan® Calcium Assays can be used to assess the efficacy of the Fluo-4® NW kit, which is often used to identify hits in high-throughput screening approaches.

Figure 5: The raw traces from the Multispan® Calcium Assays can be used to assess the efficacy of the Fluo-4® NW kit, which is often used to identify hits in high-throughput screening approaches.